

미분기하 학기말고사 (2003년 6월 16일)

1번 - 6번중 택5 (각 5점)

1. Show that a vector $\vec{v} = (v_1, v_2, v_3)$ is tangent to the graph $z = f(x, y)$, $\nabla f \neq 0$, at a point $P = (p_1, p_2, p_3)$ if and only if

$$v_3 = \frac{\partial f}{\partial x}(p_1, p_2)v_1 + \frac{\partial f}{\partial y}(p_1, p_2)v_2.$$

2. Let $\vec{F} = f_1(x, y)\vec{U}_1 + f_2(x, y)\vec{U}_2$ be a smooth vector field defined on a domain $D \subset \mathbb{R}^2$ and its smooth boundary ∂D . Show that the classical divergence theorem

$$\iint_D \operatorname{div} \vec{F} dx dy = \int_{\partial D} \vec{F} \cdot \vec{n} ds$$

is a special case of the Stokes' theorem.

3. Let M be a surface in \mathbb{R}^3 . Prove:

There exists a nonvanishing 2-form on M if and only if there exists a unit normal vector field on M .

4. Show that the cone $z^2 = x^2 + y^2$ ($z > 0$) is a ruled surface.

5. Suppose that $\{E_1, E_2, E_3\}$ is a frame field on \mathbb{R}^3 and ω_{ij} $i, j = 1, 2, 3$ are 1-forms defined by

$$\omega_{ij}(v) = \nabla_v E_i \circ E_j$$

for any tangent vector v to \mathbb{R}^3 . Show that $\omega_{ji} = -\omega_{ij}$.

6. Let M be a surface and σ be a normal section parametrized by arclength. Show that $S(\sigma') \circ \sigma' = \pm k_\sigma$, where k_σ is the curvature of σ .

7번 - 11번 중 택4 (각 8점)

7. Let $\alpha(t) = (a \cos t, a \sin t, bt)$.

a) Reparametrize α by arclenth s .

b) Find the Frenet frame, the curvature and the torsion of the curve.

8. Let M be the graph $z = xy - x^3 + 4xy^2$ and let P be the origin.

a) Describe the shape operator $S : T_P M \rightarrow T_P M$.

b) Find the principal vectors at P .

c) Evaluate the Gaussian curvature and the mean curvature at P .

9. Let $X(u, v)$ be a coordinate patch of a surface and S be the shape operator.

Prove:

a) $\nabla_{X_u} X_v = \nabla_{X_v} X_u$.

b) $S(X_u) \circ X_v = S(X_v) \circ X_u$ (i.e., S is symmetric.)

10. Let C be the circle in xz plane given by

$x = R + r \cos u, z = r \sin u, -\pi < u < \pi$, and let T be the surface of revolution obtained by rotating C around the z -axis in the angles $-\pi < v < \pi$. Then the u -curves are called meridians and the v -curves are called parallels.

a) What are the image curve under the Gauss map $G : T \rightarrow \Sigma$ of the meridians and the parallels? Here Σ is the unit sphere.

b) Sketch the regions in the parameter rectangle $-\pi < u < \pi, -\pi < v < \pi$ where the Gaussian curvature K is positive, zero and negative, respectively.

11. Consider the saddle surface M parametrized as $X(u, v) = (u, v, uv)$.

a) Find the unit normal vector field U on M .

b) Find the Gaussian curvature at (u, v, uv) .

총 25+32=57점 x 2.7(가중치) = 154 점 끝